Course Title	Code	Semester	L+P+L Hour	Credits	ECTS
Design of Steel Concrete Composite Structures	CE 526	-	3+0+0	3	10

Prerequisites

Language of Instruction	English
Course Level	Master's Degree (Second Cycle Programmes)
Course Type	Departmental Elective
Course Coordinator	Prof. Dr. Nesrin Yardımcı
Instructors	Prof. Dr. Nesrin Yardımcı
Assistants	-
Goals	The goal of this course is to understand the basic principles for the design of steel-concrete composite beams, slabs and columns and to introduce the latest advantages in knowledge in the area of composite structures and to generalize the use of composite design
Content	Introduction; materials; loadings; analysis; design; shear connectors; basic principles for design of composite beams; composite columns and composite slabs; simply-supported composite beams and slabs; continuous composite beams and slabs; composite beams in framed structures; composite columns; beam-to-column connections; worked examples.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Basic understanding of the principles for the design of steel-concrete composite beams, slabs and columns	1,2,3,4	1,2	A,C
Basic understanding of plastic moment of resistance, elastic moment of resistance, longitudinal shear, vertical shear, deflections, vibrations in steel-concrete composite slabs and beams	1,2,3,4,8	1,2	A,C
Basic understanding of the design of composite columns in axial compression, bending moment and combined axial load and bending	1,2,3,4,8,9,14	1,2	A,C
Basic understanding the design of composite connections	1,2,3,4,8,9,14	1,2	A,C

Be acquainted with codes, and be capable of applying the provisions of the design code.	1,2,3,4,8,9,14	1,2	A,C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Introduction	Lecture Notes and Textbook			
2	Advantages of composite members, Design philosophy, Loads, Load combinations	Lecture Notes and Textbook			
3	Design of composite slabs	Lecture Notes and Textbook			
4	Design of Composite slabs	Lecture Notes and Textbook			
5	Design of composite beams	Lecture Notes and Textbook			
6	Design of composite beams	Lecture Notes and Textbook			
7	Worked examples	Lecture Notes and Textbook			
8	Worked examples	Lecture Notes and Textbook			
9	Midterm Exam	Lecture Notes and Textbook			
10	Design of composite columns and frames	Lecture Notes and Textbook			
11	Design of composite columns and frames	Lecture Notes and Textbook			
12	Worked examples	Lecture Notes and Textbook			
13	Design of connections	Lecture Notes and Textbook			
14	Presentation	Lecture Notes and Textbook			
15	Presentation	Lecture Notes and Textbook			

RECOMMENDED SOURCES				
Lecture Notes	Notes prepared by the instructor			
Textbook	Liang, Qing Quan, 2014. Analysis and Design of Steel and Composite Structures. Johnson, R.P., 2004. Composite Structures of Steel and Concrete, Blackwell Scientific Publications.			

	MATERIAL SHARING
Documents	Lecture notes delivered to the students
Assignments	Homeworks are returned to students after they are graded
Exams	Exams questions are solved if demanded

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	40		
Quizzes	-	-		
Assignment	6	20		
Lab Work	-	-		
Term Project	1	40		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	lo Program Learning Outcomes				Contribution		
1	Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired.					5 √	
2	Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.	-	-			٧	

3	By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines.	
4	Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.	٧
5	Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution.	
6	Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.	٧
7	Has the ability to design and conduct theoretical, experimental, and model- based investigations; is able to use judgment to solve complex problems that may be faced in this process.	٧
8	Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.	
9	Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.	
10	Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.	
11	Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices.	
12	Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 12x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	3	42
Midterm examination	1	3	20
Homework	6	10	60
Project	1	40	40
Final examination	1	3	30
Total Work Load			234
Total Work Load / 25 (h)			10
ECTS Credit of the Course			10

П